Involutions on the affine Grassmannian and moduli spaces of principal bundles

نویسنده

  • ANTHONY HENDERSON
چکیده

Let G be a simply connected semisimple group over C. We show that a certain involution of an open subset of the affine Grassmannian of G, defined previously by Achar and the author, corresponds to the action of the nontrivial Weyl group element of SL(2) on the framed moduli space of Gmequivariant principal G-bundles on P. As a result, the fixed-point set of the involution can be partitioned into strata indexed by conjugacy classes of homomorphisms N → G where N is the normalizer of Gm in SL(2). When G = SL(r), the strata are Nakajima quiver varieties M 0 (v,w) of type D.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Determination of the Picard Group of Moduli Spaces of Semistable G-Bundles on Curves

Let G be a connected, simply-connected, simple affine algebraic group and Cg be a smooth irreducible projective curve of any genus g ≥ 1 over C. Denote by MCg (G) the moduli space of semistable principal G-bundles on Cg. Let Pic(MCg (G)) be the Picard group of MCg (G) and let X be the infinite Grassmannian of the affine Kac-Moody group associated to G. It is known that Pic(X) ≃ Z and is generat...

متن کامل

The Affine Grassmannian

The affine Grassmannian is an important object that comes up when one studies moduli spaces of the form BunG(X), where X is an algebraic curve and G is an algebraic group. There is a sense in which it describes the local geometry of such moduli spaces. I’ll describe the affine Grassmannian as a moduli space, and construct it concretely for some concrete groups. References, including the constru...

متن کامل

Rationality and Poincaré Families for Vector Bundles with Extra Structure on a Curve

Iterated Grassmannian bundles over moduli stacks of vector bundles on a curve are shown to be birational to an affine space times a moduli stack of degree 0 vector bundles, following the method of King and Schofield. Applications include the birational type of some Brill-Noether loci, of moduli schemes for vector bundles with parabolic structure or with level structure and for A. Schmitt’s deco...

متن کامل

Picard Group of the Moduli Spaces of G–bundles

Let G be a simple simply-connected connected complex affine algebraic group and let C be a smooth irreducible projective curve of genus ≥ 2 over the field of complex numbers C. Let M be the moduli space of semistable principal G-bundles on C and let Pic M be its Picard group, i.e., the group of isomorphism classes of algebraic line bundles on M. Following is our main result (which generalizes a...

متن کامل

The Line Bundles on Moduli Stacks of Principal Bundles on a Curve

Let G be an affine reductive algebraic group over an algebraically closed field k. We determine the Picard group of the moduli stacks of principal G–bundles on any smooth projective curve over k.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016